Catherine Horng, ch756

Data Science and Optimization for Good:
Algorithm and Software Development for Green Fleet Transition to Zero Emission Transportation
Name: Catherine Horng
Advisor: H. Oliver Gao

Air pollution is a significant and prevalent environmental hazard, having been a constant
source of concern for the ecosystem, public health, and social welfare. As research into air
pollution and emissions continue, it is seen to be of increasing danger to public health; in
particular, it has shown to be linked to numerous health concerns such as respiratory disease,
cardiovascular disease, and cancer. One of the primary sources of the emissions that can lead
to these health concerns is vehicles. Vehicle transmissions have shown to be large contributors
of nitrogen oxides (NOx), particulate matter (PM), hydrocarbons (HC), and other damaging
pollutants found in our atmosphere. However, there is an increasing need and a continuation for
the reliance of these vehicles. The massive amount of pollution caused by vehicles coupled with
our dependence on the form of transportation naturally leads to the question: How can we
continue maintaining and using these vehicles while reducing the amount of emissions we put in
the air?

This question has been the focus of research done by Professor H. Oliver Gao and
Timon H. Stasko. Fleet management requires sizable resources and fleet managers very
naturally are interested in minimizing the cost of maintaining these fleets. With the multiple
decisions, constraints, and uncertainties involved in making decisions about costs and
maintenance regarding fleets, this minimization is not a simple task. In the previous work done,
an optimization model has been developed to aid in the decisions of vehicle purchase, resale,
and retrofitting while also factoring in emissions. This optimization model produces optimal
policies for minimizing long-term and short-term costs as well as minimizing certain emissions
while evaluating the potential environmental and emission impact the vehicle fleet will have.
With the increasing concern of emissions to our health, emission regulations have also begun to
be put in place; thus the optimization model can also form policies that comply with these
regulations. Different regulations may affect the value of certain assets, so besides producing
these policies, the model may also estimate the value of each asset in the fleet, thus allowing
the fleet manager to evaluate the increasing or decreasing fleet value.

With the developed optimization algorithm, there is currently no method for it to be
integrated into the daily management of vehicle fleets and assets. While software was
developed and can be used to form and run these optimization models, there is a lack of tools to
utilize them. Therefore this project aims to develop software tools in order to manage vehicle
assets and fleets while simultaneously employing the described developed algorithm for green
fleet management in order to facilitate the use of this optimization tool into the regular
management of vehicle fleets and assets. The goal of this project is to have a beta version of
green fleet management software done; we achieve this goal by developing an web-based
asset management tool for vehicles with an integrated optimization model formulated to
minimize cost or emissions based on a user built fleet. The web-based software offers
advantages like accessibility to the public while still maintaining full functionality of the
optimization model.

Catherine Horng, ch756

In order to build the web

application, research was done into
Backend
the development of software Keep track of users _
application architecture. Modern o Handiing now users, log in
. . . Front End eep tragk of user data
web application architecture Pages like info, og * Handing save uploads and
consists of the frontend and the User i profle, ete Handle upload/downioads
. (HTML, CSS Run the algorithm
backend. The frontend is what the JavaScript) . _
ile system for images, HTML
users see and interact with; this Database for users/user data
consists of collecting data from the (Python- DjangofFlask)

user and displaying the results to
the user. The backend contains all
the application logic; the frontend will request information and data from the backend and the
backend will respond. The backend is also responsible for maintaining the file systems in which
the application stores the information as well as the databases.

First, we began with the design of the underlying database structure of the website. The
database is part of the backend structure of the web-application and contains all the user and
website data. The application will request data such as user information, fleet information, and
asset information from the database, so the design of the database itself is very important in
order to best represent the objects needed in order to perform processes such as optimization.
In designing the database structure, we want to model what the database is about conceptually
by representing the data and the relationships between the data. One way to represent this data
and the relationships is with an entity-relationship (ER) diagram. One analogy with an ER
diagram is to think of entities as nouns and relationships as verbs. With fleet and asset
management, there are many different entities involved including users, assets, and fleets.
These entities can all hold different properties such as age of an asset or the type of retrofit or
technology used. The different relationships in asset management include which user an asset
is owned by or what assets a fleet contains.

The entities are:

- Users: users of the asset management system, stores information such as id, name,
email, password, and other information needed to ensure user privacy

- Assets: assets in the management system, stores asset properties such as number of
asset of this type, retrofit, and emissions

- Category: categories of assets, stores information such as common information of an
asset of this category

- Fleets: fleets of the system, stores information such as assets contained in the fleet and
categories contained

- Technology: technologies, or retrofits, available, contains library of technology
predefined and user defined technology, cost of switching to this technology

- User-Defined Technology

- Optimization: optimization done on fleets; stores information such as recommendations
of switching retrofit, what to optimize, budget constraints, and regulations

Between the entities, the relationships are:

Catherine Horng, ch756

- User owns Assets: maps which user owns which assets

- User manages Fleets: maps which user owns which fleets

- User defines Technology: maps which user defines which technologies

- Asset uses Technology: maps which assets uses which technologies

- Asset is-in Category: maps which assets uses which categories

- Fleet contains Assets: maps which fleets uses which assets

- Fleet optimized with Optimization: maps which optimizations optimized which fleets

e e
OptPollut Pallutant

Objective ‘OptObj
eo
Manages Fleet ||

Category

- User Asset
@ \Z e
UserTech |-----)

oo e

Each entity and relationship requires its own table. Relationship tables contain the ID of
the connecting entities. This design ensures scalability; in this way, a user can have a
theoretically unlimited number of assets, fleets, technology, and so on. Additionally, a fleet may
contain multiple assets and different fleets may contain the same asset so that optimization can
be run on different configurations of fleets.

After designing the database structure, we can now begin designing the structure of the
web-application itself. In order to build an efficient web-application and establish a structure to
the application, a wireframe for the website was developed. Wireframing is a process in which
an overview of the application and its interactive features are drawn out in order to establish the
structure and flow of the application. This allows the design of the website to be laid out before
building the website to ensure that all features and functionality can be met and aid in building
the back-end of the application.

¢

A

$

<D

#, remaining miles,
maining idle time

<P

Catherine Horng, ch756

Looking at the above figure, the features included in the website include:

- User management: allowing users to sign up and log in to manage their assets, fleets,
optimizations, etc.

- Asset management: adding, deleting, editing, uploading, and viewing assets

- Fleet management: adding, deleting, editing, uploading, and viewing fleets; adding and
removing assets to fleets

- Optimization: running optimization strategies on fleets

Finally, we began building the website. For what language we would like to use to build
our website, we chose Python. Python has a few web frameworks that have been built for the
language and because of its ability to solve complex problems (which is needed for solving the
optimization problem), | chose to build the web-application with Python. For this project, Flask, a
micro web framework written in Python, was used. Flask is a simple to use framework with
minimalistic features that allows for native database handling. Using this framework, we build
the features described in our wireframe for asset management.

User Management: The website keeps track of users, their names, email addresses, and
passwords. Users may sign up for an account, login, and logout. Each user's assets, fleets,
technologies, optimizations, etc. are all saved and can be viewed anytime after logging in.

Asset Management: Users can create new assets, view assets, edit assets, and delete
assets. Assets have properties such as quantity of asset, remaining mileage, remaining idle

Catherine Horng, ch756

time, category, and retrofit used. The above properties are all required for the optimization
problem besides category.

Fleet Management: Users can create new fleets, view fleets, edit fleets, and delete
fleets. Fleets have properties such as name, description, and assets contained within the fleet.
Fleets are used as a grouping in order to perform optimization on.

Retrofit Technologies: Users can create retrofit technologies, which have properties such
as name and description. These technologies are what the optimization features recommend to
the users, which leads us to the next feature. Retrofit technologies may have user defined
technologies as well as technologies available to anyone.

Optimization: Users can optimize an owned fleet. By defining the optimization objective
(short-term budget, long-term budget, emission reduction), providing costs of switching to
different retrofits, and defining pollutants to reduce and their emissions as a result of switching
to different retrofits, users can use the software to aid in the decision making of fleet
management. The model will output recommendations such as switching some number of a
certain asset to use a certain retrofit while remaining within budget.

The following are a few screenshots of the beta version of the asset, fleet, and

technology management sections of the website:
e T N T Y

Fleets Assets Retrofit Technologies

The project is still in its preliminary workings of the website and is still in its beta stage of
development. The asset management capabilities function as needed while the optimization
capabilities are still in development as discussed above. However, the design of the website will
aid in facilitating the use of the previously developed algorithms and optimization models.
Following implementation of optimization, next steps include data visualization, user experience
design, and extension to other asset management problems. For example, dynamic
optimization with time periods and general multi-asset management problems such as green
building management can be formulated.

